Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease.

نویسندگان

  • Zane B Andrews
  • Balazs Horvath
  • Colin J Barnstable
  • John Elsworth
  • Lichuan Yang
  • M Flynt Beal
  • Robert H Roth
  • Russell T Matthews
  • Tamas L Horvath
چکیده

Mitochondrial uncoupling proteins dissociate ATP synthesis from oxygen consumption in mitochondria and suppress free-radical production. We show that genetic manipulation of uncoupling protein-2 (UCP2) directly affects substantia nigra dopamine cell function. Overexpression of UCP2 increases mitochondrial uncoupling, whereas deletion of UCP2 reduces uncoupling in the substantia nigra-ventral tegmental area. Overexpression of UCP2 decreased reactive oxygen species (ROS) production, which was measured using dihydroethidium because it is specifically oxidized to fluorescent ethidium by the superoxide anion, whereas mice lacking UCP2 exhibited increased ROS relative to wild-type controls. Unbiased electron microscopic analysis revealed that the elevation of in situ mitochondrial ROS production in UCP2 knock-out mice was inversely correlated with mitochondria number in dopamine neurons. Lack of UCP2 increased the sensitivity of dopamine neurons to 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP), whereas UCP2 overexpression decreased MPTP-induced nigral dopamine cell loss. The present results expose the critical importance of UCP2 in normal nigral dopamine cell metabolism and offer a novel therapeutic target, UCP2, for the prevention/treatment of Parkinson's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coenzyme Q induces nigral mitochondrial uncoupling and prevents dopamine cell loss in a primate model of Parkinson's disease.

Parkinson's disease is characterized by dopamine cell loss of the substantia nigra. Parkinson's disease and the neurotoxin 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine may destroy dopamine neurons through oxidative stress. Coenzyme Q is a cofactor of mitochondrial uncoupling proteins that enhances state-4 respiration and eliminate superoxides. Here we report that short-term oral administration ...

متن کامل

Dopamine-Synthesizing Neurons: An Overview of Their Development and Application for Cell Therapy

Cell-gene therapy is a dynamic constituent of novel medical biotechnology. Neurodegenerative disordersin which damage to or demise of specific brain cell types plays central role, are clear examples of diseasecandidate for cell replacement therapy. Dopaminergic (DAergic) neurons biosynthesize dopamine, a vitalneurotransmitter in the central nervous system. Due to the involveme...

متن کامل

Protein Kinase C-delta in dopaminergic system and experimental models of Parkinson's disease

Parkinson’s disease (PD) is a major neurodegenerative disorder characterized by progressive and substantial loss of dopaminergic neurons in the substantia nigra compacta (SNc). Currently, no available drugs prevent the progressive loss of nigral dopaminergic neurons. The mechanisms underlying the dopaminergic degenerative process observed in PD are not well understood, which has hampered develo...

متن کامل

Short-term GDNF treatment provides long-term rescue of lesioned nigral dopaminergic neurons in a rat model of Parkinson's disease.

Glial cell line-derived neurotrophic factor (GDNF) has been shown to exert neuroprotective effects on dopamine (DA) neurons in vivo. Here we report long-term rescue of nigral DA neurons after delayed short-term GDNF administration in a rat lesion model that reproduces the slowly progressing degenerative process seen in Parkinson's disease. GDNF injected close to the substantia nigra provided ne...

متن کامل

Cinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease

Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 1  شماره 

صفحات  -

تاریخ انتشار 2005